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The Gumbel–Fisher–Tippett (GFT) extreme-value analysis is applied to

evaluate the distribution, expectation value and standard deviation of the

intensity J of the strongest reflection in a given resolution shell in the X-ray

diffraction pattern of a crystal with many scattering atoms in the unit cell. For

convenience, intensities are measured in units of the average reflection intensity

in the resolution shell and, for simplicity, centric and acentric reflections are

treated separately. For acentric reflections, the expectation value � and standard

deviation � of J are � = ln n + � and � = �/61/2, where n is the number of

crystallographically independent reflections in the resolution shell and � � 0.577

is the Euler–Mascheroni constant. For centric reflections with expectation value

1 for the intensity, the corresponding expressions are � = 2(ln n + �)� ln(� ln n)

and � = 2�/61/2
� �/(61/2 ln n). Extensive numerical simulations show that these

formulas are excellent approximations for random atom configurations at all

resolutions, and good approximations for real protein crystal structures in the

resolution range between 2.5 and 1.0 Å.

1. Introduction

The distribution of average reflection amplitudes and inten-

sities in the X-ray diffraction patterns of three-dimensional

crystals has been analyzed extensively. The average reflection

intensities decrease with resolution according to Wilson’s law

because the finite size of scattering atoms, static disorder and

atomic mobility all attenuate high-resolution reflections more

than low-resolution ones (Wilson, 1942). For wide enough

resolution shells with sufficiently many reflections, the

dependence of the average reflection intensity on resolution is

smooth. For very thin shells with few reflections, pseudo-

random fluctuations overlay the systematic dependence of the

average reflection intensity but can be easily smoothed out,

which is routinely done by programs such as ECALC that

calculate normalized structure factors (Collaborative

Computational Project, Number 4, 1994).

Within each resolution shell, the expectation value for most

reflections equals the average reflection intensity in the

resolution shell. A few reflections in special positions are

expected to be stronger because symmetry enforces the

constructive interference of X-rays (Stewart & Karle, 1976;

Wilson, 1950). Here, we express all reflection intensities in a

thin resolution shell in units of their expectation values, so that

the expectation value for every reflection, including those in

special positions, is 1 by definition. The distribution of

reflection intensities within a thin resolution shell differs for

acentric (subscript a) and centric (subscript c) reflections. The

formulas for the cumulative distributions Fa and Fc and the

non-cumulative distributions fa and fc of the normalized

intensities i are well known (Wilson, 1949):

FaðiÞ ¼

Zi

0

faðxÞ dx ¼ 1� expð�iÞ; faðiÞ ¼
dFa

di
¼ expð�iÞ ð1Þ

FcðiÞ ¼

Zi

0

fcðxÞ dx ¼ erf½ði=2Þ1=2
�;

fcðiÞ ¼
dFc

di
¼

1

ð2�Þ1=2

1

i1=2
expð�i=2Þ: ð2Þ

In this work, we are interested in the statistics of the

strongest reflection in a given resolution shell. In other words,

we consider a random arrangement of scattering atoms, find

the strongest reflection and note its intensity. Then we repeat

the procedure for a different random configuration of scat-

tering atoms, again find the strongest reflection (which in

general will have different indices) and again note the inten-

sity. It is plausible that the histogram of largest intensities will

converge to a limiting distribution as the procedure is reiter-

ated. Here, we determine the analytical form of this distri-

bution and derive approximate formulas for the expectation

value and variance. In space groups with centric and acentric

reflections, the two groups of reflections are treated separately

because of their different underlying intensity distributions.



Our approach to the statistics of the strongest reflection is

based on the Gumbel–Fisher–Trippett (GFT) theory of

extreme values (Gnedenko, 1943; Gumbel, 1958; Sivapalan &

Bloeschl, 1998; Kotz & Nadarajah, 2001). This theory states

that the distribution of the largest quantity of n statistically

independent random variables converges towards one of three

universal distributions, the GFT distribution, the Fréchet

distribution or the Weibull distribution. In the context of

crystallographic reflection intensities, the relevant distribution

is the GFT distribution, which can always be rescaled to the

standard Gumbel form

gðxÞ ¼ expð�xÞ exp½� expð�xÞ�; ð3Þ

with the corresponding cumulative distribution:

GðxÞ ¼ exp½� expð�xÞ�: ð4Þ

The expectation value and standard deviation of gðxÞ can be

expressed in terms of the Euler–Mascheroni constant � ’
0.577 and � ’ 3.14159 as

� ¼ �; � ¼ �=61=2: ð5Þ

Here, we explore the predictions of GFT theory for the

statistics of the strongest reflection separately for centric and

acentric reflections. We compare the results with extensive

numerical simulations for crystal structures with randomly

placed scattering atoms and for real crystal structures taken

from the Protein Data Bank (PDB, http://www.rcsb.org)

(Berman et al., 2000). The numerical results show that the

analytical formulas are excellent approximations for random

atom configurations at all resolutions, and good approxima-

tions for real protein crystal structures in the resolution range

between 2.5 and 1.0 Å.

2. Materials and methods

2.1. Numerical methods

Utility programs were implemented in the C++ language

with extensive use of routines from the GNU scientific library

(Galassi et al., 2005). Random atom positions (compatible with

the symmetry of the space group) were generated with the

‘Mersenne twister’ uniform random-number simulator of the

GNU scientific library (Matsumoto & Nishimura, 1998).

Random data distributed according to (1) were generated

from a normally distributed random-number series with

expectation value 0 and standard deviation 1 by squaring.

Random data with a distribution according to (2) were

obtained by adding the squares of two normally distributed

variables with expectation value 0 and standard deviation

1=21=2. Numerical integrations to evaluate equations (7) and

(8) were performed by a Gauss–Kronrod 21 point adaptive

integration method. Infinite integrals were extended to a finite

boundary, which was chosen sufficiently large so that the cut-

off did not affect accuracy.

2.2. Simulations

Utility programs were written in the C++ language and

combined with software of the CCP4 suite for protein crys-

tallography (Collaborative Computational Project, Number 4,

1994) and the Clipper libraries (Cowtan, 2003). In simulations

with random atom configurations, we placed 0.0281V [Å3] C

atoms in a unit cell of volume V, which is equivalent to the

number of non-H protein atoms in a protein crystal with 50%

solvent content or a Matthews coefficient of 2.5 Å3 Da�1

(Matthews, 1968). Owing to the mass differences between C, N

and O atoms, this corresponds to a density of 1 Da (3 Å3)�1 or

a Matthews coefficient of 3 Å3 Da�1. Structure factors and

normalized structure factors were calculated with the CCP4

programs SFALL (Agarwal, 1978) and ECALC (Collabora-

tive Computational Project, Number 4, 1994), respectively.

Intensities in units of their expectation values were deter-

mined by squaring the moduli of the E values or by dividing

squared structure factors by the shell averages, as indicated. In

the former procedure, systematically strong reflections in

special positions were automatically treated correctly. In the

latter procedure, the required corrections were applied by our

own programs. Errors of all simulation results were estimated

according to the standard formulas for the sample variance

distribution (MathWorld: The Web’s Most Extensive Mathe-

matical Resource, http://mathworld.wolfram.com/).

2.3. Real crystals

Structures that had been solved at 1.5 Å resolution or better

were downloaded from the PDB (Berman et al., 2000) (release

date 18 April 2006). Duplicates or near duplicates (cut-off

90% identity) and nucleic acid structures were removed from

the set. We also removed all structures from the set that had

pseudo-origin peaks in the Patterson map that reached 40% or

more of the height of the origin peak (PDB identities 1dy5,

1ob6, 1xy1, 1 m2d, 1vrz, 2bfi, 1w5u, 1m1n, 1hqj, 1m70, 1k6f,

1t6u, 1av2, 2f46, 1pp0, 1i88, 2a8y, 1o6v, 1p4o, 1wzb or 1.7% of

all structures in the set). All graphs were prepared with the

GRACE software (http://plasma-gate.weizmann.ac.il/Grace/).

3. Predictions

3.1. Notations and conventions

Throughout this work, I, J, K stand for intensities treated as

(pseudo)random variables, and i, j, k are used when actual

values are meant. I and i stand for the intensity of a pre-picked

reflection (in units of the expectation value or shell average), J

and j for the intensity of the strongest reflection in a thin

resolution shell (in the same units), and K and k for the

intensity of the strongest reflection after rescaling to expec-

tation value 0 and standard deviation 1. F, G, H denote

cumulative probability distributions, and f , g, h the corre-

sponding non-cumulative distributions. The letters F and f are

reserved for the intensity distribution of any pre-picked

reflection and are well known [equations (1) and (2)]. g and G

denote the non-cumulative and cumulative Gumbel distribu-

tions according to equations (3) and (4). Note that the term
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Gumbel distribution is reserved for this special case and that

rescaled and shifted versions of the distribution are referred to

as Gumbel–Fisher–Tippett (GFT) distributions. Here, we only

need the special case with expectation value 0 and variance 1,

and denote it by H and h for the cumulative and non-cumu-

lative forms. As usual, � and � stand for the expectation value

and the standard deviation. Throughout, Pr abbreviates

probability, n denotes the number of unique reflections, from

which the strongest reflection is selected, and N stands for the

number of scattering atoms in the unit cell. Subscripts a and c

distinguish between acentric and centric reflections.

3.2. Distribution of the highest reflection intensity

Analytical formulas for the intensities of the strongest

acentric and centric reflections in a thin resolution shell can

be derived under the assumption that statistical inter-

dependencies between reflection intensities can be neglected.

This might appear as a severe approximation, because inten-

sity correlations are expected even for random atom config-

urations. For normalized structure factors, it has been shown

that the importance of correlations decreases with the number

of scattering centers (Cochran & Woolfson, 1955; Woolfson,

1987), which explains the success of direct methods in the field

of small-molecule crystallography and the much smaller role

of these methods in macromolecular crystallography. We are

not aware of similar correlation analyses for normalized

intensities, but it is at least plausible (and confirmed by our

unpublished calculations) that also for normalized intensities

the importance of correlations goes down with the number of

scattering atoms. Ultimately, this approximation is justified by

the success of the predictions that are based on it.

If the reflection intensities are treated as statistically inde-

pendent, the cumulative distribution of the intensity J of the

strongest of n reflections can be expressed simply as the

product of the n cumulative distributions F of the individual

reflection intensities, which are conveniently written as

distributions with an exponential tail FðxÞ ¼ 1� exp½�uðxÞ�:

PrðJ � xÞ ¼ ½FðxÞ�n ¼ f1� exp½�uðxÞ�gn: ð6Þ

Then, by definition,

�ðJÞ ¼

Z1

0

dx x
d

dx
PrðJ � xÞ

¼

Z1

0

dx xnf1� exp½�uðxÞ�gn�1 exp½�uðxÞ�u0ðxÞ ð7Þ

�ðJ2Þ ¼

Z1

0

dx x2 d

dx
PrðJ � xÞ

¼

Z1

0

dx x2nf1� exp½�uðxÞ�gn�1 exp½�uðxÞ�u0ðxÞ ð8Þ

�ðJÞ ¼ ½�ðJ2Þ � �2ðJÞ�1=2: ð9Þ

These expressions can only be evaluated numerically, but

fortunately GFT extreme-value analysis allows significant

simplification. Note that the probability for the strongest

reflection intensity to be smaller than u�1ðln nÞ, where u�1

denotes the inverse of u, uðu�1ðxÞÞ ¼ u�1ðuðxÞÞ ¼ x, can be

approximated as

PrðJ � u�1
ðln nÞÞ ¼ ½Fðu�1

ðln nÞÞ�n ¼ 1�
1

n

� �n

�
1

e

for large n: ð10Þ

Therefore, the value of the cumulative distribution is inter-

mediate between 0 and 1 for the argument around u�1ðln nÞ,

which suggests that the non-cumulative distribution peaks

near this value. This is confirmed by a more detailed analysis

and suggests interpolation of u around u�1ðln nÞ.

uðxÞ � ln nþ anðx� bnÞ ð11Þ

an ¼ u0ðu�1
ðln nÞÞ; bn ¼ u�1

ðln nÞ: ð12Þ

Plugging this into equation (6) yields

PrðJ � xÞ � 1�
exp½�anðx� bnÞ�

n

� �n

: ð13Þ

Using the well known identity

lim
n!1

1�
�

n

� �n

¼ expð��Þ ð14Þ

and assuming that an ¼ u0ðu�1ðln nÞÞ and bn ¼ u�1ðln nÞ vary

sufficiently slowly with n to be treated as constants, equation

(13) can be simplified further to the usual forms in extreme-

value analysis:

PrðJ � xÞ � expf� exp½�anðx� bnÞ�g

¼ Gðanðx� bnÞÞ ð15Þ

PrðanðJ � bnÞ � xÞ � exp½� expð�xÞ�

¼ GðxÞ: ð16Þ

In (15) and (16), GðxÞ is the cumulative Gumbel distribution

[equation (4)]. A more rigorous derivation of some of the

steps from equation (6) to equations (15) and (16) can be

found in more mathematically oriented treatments of

extreme-value analysis (Gnedenko, 1943; Gumbel, 1958;

Sivapalan & Bloeschl, 1998; Kotz & Nadarajah, 2001). In

words, (15) and (16) express that the highest reflection

intensity J in a thin resolution shell is GFT distributed if a

large set of crystal structures that differ only in the (randomly

chosen) positions of scattering atoms is considered. Note that

this result applies separately to the strongest acentric reflec-

tion Ja and to the strongest centric reflection Jc.

3.3. Expectation value and standard deviation of the highest
reflection intensity

Equation (15) is a rescaled and shifted form of the cumu-

lative Gumbel distribution. As the expectation value � and

standard deviation � of the Gumbel distribution are known

from equation (5), the corresponding values for the distribu-
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tion of the highest reflection intensity can be readily derived.

Combining equations (5) and (15), one readily obtains

�ðJÞ ¼
1

an

� þ bn; �ðJÞ ¼
1

an

�

61=2
: ð17Þ

This equation relates the expectation value and standard

deviation of the GFT distribution of the strongest reflection to

the distribution for a typical reflection. As this distribution

differs for acentric and centric reflections [see equations (1),

(2)], equation (17) has to be evaluated separately for the two

cases.

(a) Acentric case: The cumulative distribution of intensities

of acentric reflections is FaðiÞ ¼ 1� exp½�uaðiÞ�, where

uaðiÞ ¼ i and u0aðiÞ ¼ 1 according to equation (1). It follows

straightforwardly from equation (12) that an;a ¼ 1 and

bn;a ¼ ln na, which in combination with (17) leads to

�ðJaÞ ¼ ln na þ �; �ðJaÞ ¼ �=61=2: ð18Þ

Note that for a typical thin shell, such as the 1.5 � 0.01 Å shell

discussed below, and for typical crystals in the PDB, the

number of acentric reflections na in the shell is between a few

hundred and a few thousand. Further note that �ðJaÞ grows

logarithmically with na, which is physically unreasonable for

very large na (very high resolution) and a fixed number of

scattering atoms N. The non-physical result is due to a

breakdown of the formulas for the distributions fa and Fa for

very large reflection intensities. For typical values na, there is

no problem because values for �ðJaÞ ¼ ln na þ � are in a range

where the original distributions fa and Fa are excellent

approximations.

(b) Centric case: The cumulative distribution for a pre-

picked centric reflection is FcðiÞ ¼ erf½ði=2Þ1=2
� according to

equation (2). From the definition FcðiÞ ¼ 1� exp½�uðiÞ� and

the expansion of the error function for large arguments

erfðxÞ � 1� ½expð�x2Þ=ðx�1=2Þ�½1� 1=ð2x2Þ þ . . .�, one can

readily deduce ucðiÞ ¼ i=2þ 1
2 ln iþ 1

2 lnð�=2Þ þ 1=i þ . . . �
i=2. If the expansion is limited to the leading order, it implies

that bn;c ¼ u�1
c ðln ncÞ � 2 ln nc and an;c ¼ u0cðu

�1
c ðln ncÞÞ � 1=2

according to (12). In combination with equation (17), it then

follows that

�ðJcÞ ¼ 2ðln nc þ �Þ; �ðJcÞ ¼ 2�=61=2; ð19Þ

which differs from the result for acentric reflections by an

extra factor 2. To obtain a more accurate estimate, we set

u�1
c ðln ncÞ ¼ ð1þ �Þ2 ln nc and then exploit that � is much

smaller than 1 to evaluate it approximately. The resulting

better, but still approximate, estimates are

�ðJcÞ ¼ 2ðln nc þ �Þ � lnð� ln ncÞ;

�ðJcÞ ¼
2�

61=2
1�

1

2 ln nc

� �
:

ð20Þ

For a typical thin shell, such as the 1.5 � 0.01 Å shell discussed

below, and for typical crystals in the PDB, the number of

centric reflections nc in the shell is between 20 and 200. With

such values of nc, the correction terms to the first-order

approximations for �ðJcÞ are between 2 and 3 and the

correction terms for �ðJcÞ are less than 1. Note that the

correction terms in (20) become negligible compared to the

leading terms in (19) for very large nc.

3.4. Confidence intervals for the highest reflection intensity

The highest reflection intensity is GFT distributed both in

the acentric and in the centric case [equation (15)]. Therefore,

confidence intervals for the highest reflection intensity can be

expressed in a universal form, which applies separately to both

cases. For this, it is necessary to express the actual highest

reflection intensity in terms of its deviation from �ðJÞ,
expressed in multiples m of the standard deviation �ðJÞ (Table

1). Note the asymmetry of the Gumbel distribution: for a

random arrangement of the scattering atoms, it is practically

impossible for the actual intensity of the strongest reflection to

be more than 3� below the expectation value. In contrast,

random arrangements that lead to a strongest intensity more

than 3� above the expectation value occur in more than 1% of

cases (Table 1).

The results can be expressed in slightly different form as

intervals around the expectation value, which cover the actual

intensity of the strongest reflection for a random arrangement

of scattering atoms with a predetermined level of confidence

(e.g. 99%). To make the choice of the interval around �ðJÞ
unique, we have additionally required that the probability of

high- and low-intensity outliers should be equal. With this

additional requirement and the abbreviation t for the prob-

ability �� �� � X � �þ ��, it is straightforward to show

that � and � should be
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Table 1
Probabilities for large deviations from the expectation value according to
the GFT distribution [calculated from equation (22)].

Note the asymmetry in the distribution and note that the values are
independent of the values for � and �.

m PrðJ � ��m�Þ PrðJ � �þm�Þ PrðJ � ��m� _ J � �þm�Þ

0 57% 43% 100%
1 13% 14% 27%
2 0.07% 4.2% 4.3%
3 <10�9% 1.2% 1.2%
4 <10�9% 0.33% 0.33%

Table 2
Confidence intervals around the expectation value according to the GFT
distribution.

The boundaries of the interval were chosen so that high- and low-intensity
outliers are equally probable. Numerical values were calculated from equation
(21).

Prð�� �� � J � �þ ��Þ � �

90% 1.31 1.87
95% 1.47 2.42
99% 1.75 3.68
99.5% 1.85 4.22
99.9% 2.03 5.48



� ¼
61=2

�
� þ ln � ln

1� t

2

� �� �� �
;

� ¼
61=2

�
�� � ln � ln

1þ t

2

� �� �� �
:

ð21Þ

Numerical results for representative confidence levels t are

collected in Table 2. For a random arrangement of scattering

atoms, the intensity of the strongest reflection falls with a

probability of 90% within an asymmetric interval of width

1:31� þ 1:87� ¼ 3:18� around the expectation value. A wider

interval of width 1:75� þ 3:68� ¼ 5:43� should cover the

intensity of the strongest reflection with 99% confidence

(Table 2).

4. Tests with simulated data

4.1. Limitations of the analytical treatment

The analytical treatment of the intensity of the strongest

reflection is based on a number of assumptions and approx-

imations, even for random atom configurations. (a) The

analysis is limited to cases with many atoms in the unit cell, so

that the underlying intensity distributions (1) and (2) are good

approximations. (b) Statistical interdependencies between

reflection intensities are neglected, although weak correla-

tions are expected even for random atom configurations, as

has been extensively shown for normalized structure factors in

the context of direct methods (Cochran & Woolfson, 1955;

Woolfson, 1987). (c) It is assumed that the strongest reflection

is selected from many reflections, so that the GFT analysis is a

good approximation. In a first step, we tested the merit of

these approximations without the extra complications from

non-random atom configurations in real crystal structures. We

focused on four resolution shells, at 1.5 � 0.01, 2.0 � 0.02,

3.4 � 0.05 and 5.0 � 0.1 Å. The reciprocal-space volumes of

these four resolution shells were in the ratio

1.00 : 0.63 : 0.18 : 0.08.

4.2. The distribution of the highest reflection intensity

Simulations of the distribution of the strongest reflection

intensity were run for test cases with Matthews coefficient 3

and 4000 atoms in P1 and P�11 unit cells. The two space groups

were chosen because they have only acentric and centric

research papers

150 Bochtler and Chojnowski � Highest reflection intensity in a resolution shell Acta Cryst. (2007). A63, 146–155

Figure 1
Distribution of the intensity of the strongest reflection for 100 000
different configurations of scattering atoms in (a) space group P1 and
(b) space group P�11 in resolution shells 1.5 � 0.01 Å and 5.0 � 0.1 Å.
Simulations were run for 50% solvent content and 4000 randomly placed
C atoms (this is approximately the number of non-H atoms in 440 amino
acids). �simðJÞ and �simðJÞ were derived directly from the numerically
obtained distributions and are independent of the theoretical predictions
for these values. Error bars indicate uncertainties at the 1� level.

Figure 2
The expectation value � and standard deviation � of the intensity Ja of
the strongest acentric reflection in the resolution shells 1.5 � 0.01 Å (a)
and 5.0 � 0.1 Å (b). na denotes the number of crystallographically unique
acentric reflections. Black lines are calculated according to the analytical
equation (18), and gray lines are obtained by numerical integration of
equations (7) to (9). Open boxes show the results of a simulation with
uncorrelated random variables distributed according to equation (1).
Circles show the results of simulations with 10 000 random atom
configurations in space group P212121. Small black circles are obtained
when unsmoothed shell averages of the intensity are used for normal-
ization. Large gray circles present the results for the normalization
derived by the ECALC program, which smoothes the fluctuations of
average intensities in thin resolution shells. UC stands for unit cell.



reflections, respectively. To make comparisons with theory

independent of the expectation value and standard deviation

of the distribution, the simulated data were plotted in terms of

the reduced intensity K ¼ ðJ � �simÞ=�sim. Note that �sim and

�sim were derived from simulated histograms and not from the

GFT predictions. By definition, the expectation value and

standard deviation of K are 0 and 1, and therefore the Gumbel

distribution has to be rescaled for a direct comparison.

Combining equations (4) and (5), it follows immediately that

the appropriate cumulative distribution is

HðkÞ ¼ exp � exp �
�

61=2
k� �

� �h i
: ð22Þ

Differentiating this expression yields the corresponding non-

cumulative distribution:

hðkÞ ¼
�

61=2
exp �

�

61=2
k� �

� �
exp � exp �

�

61=2
k� �

� �h i
:

ð23Þ

The agreement is excellent even in the tails of the distribution

for both P1 and P�11 unit cells at all tested resolutions (Fig. 1

and data not shown).

4.3. Expectation value and standard deviation of the highest
reflection intensity

The atom density was kept constant at 1 Da (3 Å3)�1, but

the unit-cell size was varied. As the volume of the reciprocal

unit cell is inversely proportional to the volume of the direct-

space unit cell, a change in unit-cell size alters the number of

scattering atoms and also the number of reflections in each

thin resolution shell. For each unit-cell size, 10 000 random

atom configurations were generated.

(a) Acentric case: Initial tests were run in space group

P212121. In this space group, reflections with all indices

different from 0 are acentric. For the 1.5 � 0.01 Å shell, all

analytical and numerical predictions for �ðJaÞ and �ðJaÞ are

consistent with simulation results (Fig. 2a). For the 5.0 � 0.1 Å

resolution shell, which has approximately tenfold smaller

volume, predictions and simulations agree for �ðJaÞ (Fig. 2b,

left panel), but diverge for �ðJaÞ, particularly for small

reflection numbers na (Fig. 2b, right panel, note the break in

the ordinate). The discrepancy depends on the normalization

procedure: it is less severe if smoothed shell intensity averages

are used.

Acta Cryst. (2007). A63, 146–155 Bochtler and Chojnowski � Highest reflection intensity in a resolution shell 151

research papers

Figure 3
The expectation value � and standard deviation � of the intensity Jc of
the strongest centric reflection in the resolution shells 1.5 � 0.01 Å (a)
and 5.0 � 0.1 Å (b). nc denotes the number of crystallographically unique
centric reflections. Dashed black lines are according to equation (19) and
continuous black lines according to equation (20). Open boxes show the
results of a simulation with uncorrelated random variables distributed
according to equation (2). Gray lines and circles have meanings
analogous to in Fig. 2.

Figure 4
The expectation value � and standard deviation � of the intensity (a) Ja

of the strongest acentric reflection and (b) Jc of the strongest centric
reflection in the resolution shells 1.5 � 0.01 Å (gray circles) and
5.55 � 1.87 Å (black squares). Bins for n values were chosen as a
compromise between the conflicting requirements for large bins to collect
sufficient statistics for �ðJÞ and �ðJÞ and for small bins to keep the spread
of n low. In the 55 � 1.87 Å shell, two structures with very regular �
architectures (1k5c, 1jl0) that lead to extreme outliers were excluded
from the analysis.



As expected, checks in space group P212121 for other

resolution shells confirm the trend that the predictions for

�ðJaÞ are good throughout, and predictions of �ðJaÞ tend to be

better for higher-resolution shells with more reflections (Figs.

S1A, B).1 Simulations support the validity of the analytical

formulas also for other space groups and across the resolution

range (Figs. S1C–J). In centered space groups such as C121,

systematically absent reflections do not contribute to na in

equation (18) (Figs. S1C–F).

(b) Centric case: As above, initial tests were run in space

group P212121. In this space group, reflections in the h ¼ 0,

k ¼ 0 and l ¼ 0 planes of reciprocal space are centric. As

anticipated, we find that the formulas of equation (19) for

�ðJcÞ and �ðJcÞ overestimate both quantities severely, but the

next order approximations of equation (20) agree well with

simulations (compare the dashed and continuous black lines in

Fig. 3). For centric reflections, the extreme-value approxima-

tions that lead to equation (20) introduce a small extra error

into the prediction of �ðJcÞ, which can be avoided by the

numerical integration according to equations (7) to (9)

(compare the agreement of the continuous black and gray

lines with the open boxes). As in the case of the acentric data,

ECALC smoothing of shell average reflection intensities

improves the agreement between the analytical results and the

simulations (Fig. 3).

We have confirmed that the formulas for �ðJcÞ and �ðJcÞ

hold at other resolutions (Figs. S2A, B) and for other non-

centrosymmetric space groups (Figs. S2C–F). As expected, the

formulas of equation (20) apply to centrosymmetric space

groups such as P�11, which have only centric reflections, as well.

In these space groups, the analytical approximations are better

than in non-centrosymmetric space groups, because there are

more centric reflections in each thin resolution shell (compare

Figs. S2C–F and Figs. S2G–J).

5. Tests with real data from the Protein Data Bank
(PDB)

5.1. Selection of test cases

Structures with a resolution better than 1.5 Å without

nucleic acids were selected from the Protein Data Bank (PDB,

release date 18 April 2006). Duplicates with over 90%

sequence identity were removed to avoid bias due to the

presence of multiple nearly identical structures. Calculated

structure factors were used throughout because experimental

structure factors (a) were not available for all structures, (b)

could be tainted by the presence of spurious ice or salt peaks,

(c) would require correction for overall anisotropic B factors,

which can be done, but introduces additional complications.

As before, we focused primarily on two resolution shells,

which are representative for high- and low-resolution data,

respectively.

5.2. Expectation value and standard deviation of the highest
reflection intensity

In contrast to the situation for simulated data, which can be

generated in any desired quantity to obtain reliable statistics

for �ðJÞ and �ðJÞ, there is typically only one structure for a

given n. Therefore, it was necessary to cluster real structures

into bins with similar n. Bins for n values were chosen as a

compromise between the conflicting requirements for large

bins to collect sufficient statistics for �ðJÞ and �ðJÞ and for

small bins to keep the spread of n low. The result of this

analysis is presented in Fig. 4. For both acentric and centric

reflections, we find excellent agreement between the predic-

tions and the results for real data for the high-resolution shell.

In contrast, there is a significant discrepancy for the low-

resolution shell, where the highest intensities �ðJaÞ and �ðJcÞ

and also �ðJaÞ and �ðJcÞ are larger than predicted.

5.3. Confidence interval for the highest reflection intensity

The above analysis does not directly test whether the

predicted asymmetry of the Ja and Jc distributions is present in

real data. Therefore, these data were expressed in a different

way to look for this feature in the 1.5 � 0.01 Å resolution shell

(Figs. 5a, b). If the approximations for random data were

applicable to real data, then, according to equations (18), (20)

and (21) and Table 2, the region �� 1:31� � J � �þ 1:87�
(the orange stripe in Figs. 5a, b) should cover 90% of all

highest reflection intensities, with 5% outliers each above and

below this interval. The wider interval �� 1:75� � J �

�þ 3:68� (the yellow stripe in Figs. 5a, b) should even cover

99% of all real cases, again with an equal number of outliers

above and below the interval. Qualitatively, the scatter plots

are in excellent agreement with the predictions from the

analytical formulas. As predicted from the asymmetry of the

GFT distribution, the scatter plots of Ja and Jc have very sharp

lower borders, but fade out much more gradually towards high

Ja and Jc values (Figs. 5a, b).

For a more detailed qualitative comparison between the

(approximate) predictions for random data and the results for

real data, it is necessary to quantify the percentage of outliers.

This has been done for the predicted 90% confidence interval,

initially for the 1.5 � 0.01 Å resolution shell, and subsequently

for many other thin shells at different resolutions. The number

of large and small Ja and Jc outliers was then plotted as a

function of the average resolution of the shell in the range for

the resolution range from 1.0 to 6 Å. Based on the analytical

treatment (for random atom configurations), there should be

5% large J and 5% small J outliers. In agreement with the

results in Fig. 4, we find that the predictions are good for high-

resolution shells (Figs. 5c, d) but break down for shells at low

resolution (Figs. 5e, f).

5.4. Good agreement at high resolution

For thin shells at high resolution in the range from 1.0 to

2.5 Å (Figs. 5c, d), the predictions agree well with data

calculated for real crystal structures. Independent of the

precise method of intensity normalization (by ECALC with
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smoothing or simply division without smoothing), there are

slightly too many large J outliers and slightly too few small J

outliers. Apart from this minor discrepancy, the good agree-

ment between predictions and results for real crystal struc-

tures shows that the statistics for the highest reflection

intensity in this resolution range are not strongly influenced by

the non-random features of real crystal structures (Figs. 5c, d).

Analogous findings are obtained for the predicted 99%

confidence interval (Figs. S3A, B)

5.5. Poor agreement at low resolution

In contrast, there are major discrepancies for shells at low

and very low resolution in the range from 2.5 to 6 Å (Figs. 5e,

f). The discrepancies are particularly serious for Ja values

calculated by the ECALC program (termed E2 outliers in the

figure). The resolution dependence of the percentage of

outliers is remarkable. There are far too many small Ja outliers

and far too few large Ja outliers in the resolution range around

3 Å. At still lower resolution, the discrepancies are even

larger, but now the effects are reversed and too many large Ja

outliers and too few small Ja outliers are observed (Figs. 5e, f).

Similar discrepancies are found for the predicted 99% confi-

dence interval (Fig. S3C, D).

After much testing, this complicated behavior was traced

to an unexpected source, namely the detailed behavior of

the ECALC program (Collaborative Computational Project,

Number 4, 1994). We had assumed that the E2 values from

ECALC would be 1 on average in all resolution shells. This

was indeed true if the ECALC was applied to thin shells of

diffraction data as in Figs. 2 and 3, but turned out to be untrue

if ECALC was applied to thick resolution shells (Fig. S4). In

this case, we found that a correction factor greater than 1 was

required around 3.0 Å and a correction factor smaller than 1

was required at even lower resolution for average E2 values to

be 1 in each shell. Without the correction, there are too many

small Ja and too few large Ja outliers around 3.0 Å. At even

lower resolution, there are too many large Ja and too few small

Ja, exactly as would be expected (Figs. 5e, f).

After correcting for this feature of ECALC, so that average

normalized intensities are truly 1 at all resolutions, there are

still too few small Ja and too many large Ja outliers (Fig. 6a),

but now the results for the ECALC procedure agree with the

results for the simple normalization protocol (compare Fig. 6a

and Fig. 5e). We believe that the remaining discrepancy can be

attributed to the features of real crystal structures, which tend

to enhance some reflections at the expense of others. The

extreme example of a near-perfect local symmetry, which

almost extinguishes every second reflection and strongly

enhances the rest, readily explains why an uneven distribution

of reflection intensities increases J and therefore leads to too

many large J outliers if it is not taken into account. Therefore,

structures with strong pseudo-origin peaks were excluded

from the analysis from the beginning (see Materials and

methods for details).

Numerical tests were run to pinpoint precisely which non-

random features of real crystal structures are responsible for

the deviations from the predicted largest reflection intensity.

In short, we modified real structures from the PDB so that
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Figure 5
Strongest acentric (a, c, e) or centric (b, d, f ) reflection in a thin resolution
shell for real structures from the Protein Data Bank (PDB, release date 18
April 2006). (a), (b) Intensity of the strongest reflection in the shell
1.5 � 0.01 Å. The red line indicates the prediction for the expectation
value according to (a) equation (18) or (b) equation (20), and the orange
and yellow regions show the predicted 90 and 99% confidence intervals
according to equation (21) and Table 2. (c, d, e, f ) Quantification of (a)
and (b), not only for the 1.5 � 0.01 Å shell but for many thin shells of
equal volume centered at various resolutions. Theory predicts 5% outliers
each above and below the predicted 90% confidence interval. The red
and black lines show the actual percentage of large J outliers and blue
and green lines indicate the actual percentage of small J outliers for real
structures from the PDB. Red and blue lines are based on the
normalization with respect to actual shell intensity averages (label
I=I0), and black and green lines are based on intensities calculated from
normalized structure factors, which in turn are based on smoothed
intensity averages (label E2). The high (c, d) and low (e, f ) resolution
ranges are presented separately. In (d) and ( f ), structures with fewer than
10 centric reflections in a thin resolution shell were excluded from the
analysis.



they retained some non-random features, but lacked others.

As it is the closest approximation to the situation with real

data, we have kept the protein mask but randomly redis-

tributed the scattering atoms and then applied van der Waals

repulsion between atoms, but no bonding terms to account for

the short atom–atom distances in crystal structures (Fig. 6b).

As expected, there is still substantial discrepancy at low

resolution. Essentially the same is found if atoms are

randomly redistributed between the mask, but not subjected

to any interactions (Fig. 6c). A substantial discrepancy at very

low resolution remains even after atom positions have been

fully randomized (Fig. 6d). The discrepancy becomes insig-

nificant only after setting all B factors to 0 (Fig. 6e). Note that

the excellent agreement between predictions and calculations

in Fig. 6(e) shows that intensity correlations, which are

neglected in the analytical approach, apparently do not play a

major role.

6. Generalizations and applications

In this work, we have focused on intensities in thin resolution

shells, so that expectation values could be normalized either to

their expectation value or to the shell intensity average.

Without the latter, the limitation to thin resolution shells can

be dropped and all reflections, including those in special

positions, can be treated equally, with only the distinction

between acentric and centric reflections. However, the

‘strongest’ reflection in this sense is no longer the reflection

with the highest intensity, but the most ‘unusual’ reflection in

the sense that its intensity exceeds the expectation value by

the largest factor. Therefore, our formulas, applied to either

thin shells or wide shells, should be applicable as an alternative

to the usual E-value-based criteria to reject unlikely reflec-

tions at the stages of X-ray data integration or scaling. Our

tests with real data show that our formulas should work well

from the highest possible resolution to 2.5 Å, except for

structures with a strong pseudo-origin peak. Owing to the

influence of non-random features in real data on the highest-

reflection intensity at low resolution, our analysis should not

be applied to data below 2.5 Å resolution, or the confidence

interval should be chosen wider than would be required for

data from crystals with atoms in fully random positions.
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